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Background

Optimal hydrogen supply chains

German energy and climate policy targets
• Strongly increasing use of variable renewable 

energy sources
• Decarbonization of all energy sectors

Sector coupling as a strategy to
• (i) decarbonize other sectors
• (ii) provide flexibility to the power sector

 often under-represented in IA models
• E.g., produce hydrogen with renewable electricity

and use it for mobility, heating, industry, …

Focus here
• Domestic H2 production and distribution
• Use of H2 for fuel-cell electric vehicles
• Research carried out in Kopernikus project P2X, supported by BMBF
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BMWI, AGEE Stat: Zeitreihen zur Entwicklung der 
erneuerbaren Energien in Deutschland

https://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html
https://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html
https://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html


Research questions and contribution

Optimal hydrogen supply chains

We aim to determine least-cost hydrogen supply chains…
• … considering differences in energy efficiency, investment costs, and storage capabilities
• … and considering electricity system interactions

This calls for a numerical model
• We develop an open-source model and apply it to a future (German) power system with high 

shares of renewables

Outcomes of interest
• Hydrogen: optimal technology mix, supply costs, and their drivers
• Electricity system: effects on capacity and dispatch, costs

What is new?
• Previous studies often did not account for power sector interactions of flexible hydrogen supply
• Fully open-source / open data analysis
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Background

The model
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Model: DIETER

Optimal hydrogen supply chains

Visit DIETER
• Open-source GAMS code under MIT license
• www.diw.de/dieter
• https://github.com/diw-berlin/dieter

Cost minimization
• Dispatch and investment
• Hourly resolution over one year
• Thermal and renewable technologies
• Different types of electricity storage
• Demand-side management, reserves
• Residential heating, electric vehicles

Linear program
• Deterministic, perfect foresight

• No transmission constraints
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http://www.diw.de/dieter
https://github.com/diw-berlin/dieter


Model: extension of DIETER

Optimal hydrogen supply chains

New hydrogen module
• Two electrolysis technologies
• Four channels for distributing H2 to fuel stations, including

• Gaseous H2

• Liquified H2

• LOHC

• Different storage options
• Follow-up work: reconversion to electricity

Full co-optimization
• Model decides on optimal capacities and hourly use
• Given conventional electricity demand and H2 demand for mobility
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https://commons.wikimedia.org/wiki/File:Dibenzyltoluene_V1.svg
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2 Overview of hydrogen supply chains in the model
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Optimal hydrogen supply chains

We investigate not all channels in one
model run, but combinations of each
centralized with the decentralized channel







Data and scenarios

Optimal hydrogen supply chains

Electricity sector
• Brownfield scenario for 2030
• Capacities bounded by current grid

development plan (NEP)
• Maximum investment into thermal 

plants, minimum investments into
renewables and storage

• Time series provided by Open 
Power System Data & ENTSO-E

• Exogenous minimum renewables
share of 65%, 70%, 75%, 80%
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Hydrogen infrastructure
• Fully „greenfield“
• H2 demand for mobility: 0, 5%, 10%, 25% of passenger road traffic in Germany (0, 9, 18, 45 TWhH2)
• General assumptions: each fuel station can only offer H2 from one channel

Lignite; 9.3 GW
Hard coal; 9.8 GW

CCGT; 17.6 GW

OCGT; 17.6 GW

Oil; 3.2 GW

Other; 4.1 GW

Run-of-river; …

Biomass; 6.89 GW

Wind onshore; 81.5 GWWind offshore; 
17.0 GW

PV; 91.3 GW

Pumped-hydro storage; 9.5 GW

Lithium-ion batteries; 2.0 GW

https://www.netzentwicklungsplan.de/de/netzentwicklungsplaene/netzentwicklungsplan-2030-2019
https://doi.org/10.1016/j.apenergy.2018.11.097


Background

Some intuition: 
potential drivers of results
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Drivers I: Tradeoff between overall efficiency and flexibility

Optimal hydrogen supply chains

 LOHC dominated by GH2 and LH2 (worse in both dimensions in direct comparison)
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Drivers II: Fixed investment and transportation capacity costs

Optimal hydrogen supply chains

 Only 3% spread between cheapest and most expensive supply chain
 Transportation costs highest for GH2 , low effective load capacity of GH2 trailer
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Drivers III: Storage costs (and losses)

Optimal hydrogen supply chains

• Substantially lower storage costs for LH2 and LOHC
• Expensive high pressure storage at the filling station only buffer storage
• LH2 also suffers from boil-off (about 20%/week)

 Intuition not so clear Analysis with numerical optimization model required
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Background

Results: hydrogen supply
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Results: hydrogen supply chains and H2 supply costs

Optimal hydrogen supply chains
Stöckl, Schill, Zerrahn. September 17, 2019, Melbourne

4

Low RES share, low H2 demand:
• Limited renewable surpluses
• Not much need for additional flexibility
• Decentralised H2 supply dominant because

high energy efficiency matters most



Results: hydrogen supply chains and H2 supply costs

Optimal hydrogen supply chains
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High RES share, low H2 demand:
• Higher renewable surplus generation
• Temporal flexibility more beneficial
• LH2 and LOHC allow longer-term storage



Results: hydrogen supply chains and H2 supply costs

Optimal hydrogen supply chains
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High H2 demand:
• LH2 or LOHC beneficial
• High RES: boil-off prevents seasonal storage with LH2
• Hardly any GH2: high storage and transportation costs



Background

Results: electricity system
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4 Effects on generation capacity (vs. respective baseline)
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Optimal hydrogen supply chains
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4 Effects on yearly electricity generation (vs. respective baseline)
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Optimal hydrogen supply chains

-30

-10

10

30

50

70

90

Res65-Dem5
(DEC)

Res65-Dem25
(DEC+LH2)

Res80-Dem5
(DEC+LOHC)

Res80-Dem25
(DEC+LOHC)

TW
h

Pumped hydro

Li-ion

Other renewable

PV

Offshore wind

Onshore wind

Other conventional

Natural gas

Hard coal

Lignite

 Storage capability of LOHC and LH2 allows additional integration of wind power 



4 Effects on renewable curtailment (vs. respective baseline)
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Optimal hydrogen supply chains

-50

-40

-30

-20

-10

0

10

Res65-Dem5
(DEC)

Res65-Dem25
(DEC+LH2)

Res80-Dem5
(DEC+LOHC)

Res80-Dem25
(DEC+LOHC)

TW
h

 LOHC makes use of renewable electricity that would otherwise be curtailed



4 Effects on system LCOE (without fixed H2 costs)
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Optimal hydrogen supply chains

 Clear renewable integration co-benefit of hydrogen in 80% renewables case
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4
Sneak preview: what about battery-electric vehicles?
Effects on system LCOE (without fixed H2 or BEV-related costs)
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Optimal hydrogen supply chains

 If BEV are used instead of fuel cell H2 vehicles, also substantial co-benefits
 …and lower electricity demand, lower deployment of RES, lower overall cost
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 To be explored in more detail in future work



Summary and conclusion

Optimal hydrogen supply chains

Tradeoff between energy efficiency and temporal flexibility
• Energy-efficient decentral electrolysis optimal for lower shares of variable renewables
• Less energy-efficient centralized electrolysis gains relevance with higher shares of variable 

renewables because of storage benefits

Optimal choice of H2 supply chains also needs to consider other factors
• Space requirements
• Technology acceptance
• Perceived / real danger of operations
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Summary and conclusion

Optimal hydrogen supply chains

Flexible sector coupling
• …can generate substantial co-benefits for integrating wind and solar energy

 should be considered in energy models
• …but also requires additional deployment of variable renewables

Limitations
• Results are driven by renewable surplus generation
• Surpluses may be over-estimated, as we do not consider competing options for flexibility and

sector coupling
More research on energy system implications of massive sector coupling necessary

Future research
• Additional or competing flexibility options in the electricty sector
• Long-term power storage via H2-to-electricity
• Maybe: how does this compare with Australia?
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Thank you for listening

DIW Berlin — Deutsches Institut
für Wirtschaftsforschung e.V.
Mohrenstraße 58, 10117 Berlin
www.diw.de

Contact
Dr. Wolf-Peter Schill
wschill@diw.de | @WPSchill



Utilization patterns LOHC (RES75 DEM5)

Optimal hydrogen supply chains
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