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1@ Background

Germany: renewable sharein...

German energy and climate policy targets

40

e Strongly increasing use of variable renewable 35

energy sources 30
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* Decarbonization of all energy sectors S 50
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Sector coupling as a strategy to .
* (i) decarbonize other sectors 0 o e e e e e e e o6
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* (ii) provide flexibility to the power sector

- often under-represented in IA models —®—Gross electricity consumption

—e—Final energy demand heating and cooling

* E.g., produce hydrogen with renewable electricity Final energy demand transportation

and use It fOF mOblllty' heatmg' IndUStry' BMW!I, AGEE Stat: Zeitreihen zur Entwicklung der

erneuerbaren Energien in Deutschland

Focus here
¢ Domestic H, production and distribution
e Use of H, for fuel-cell electric vehicles

* Research carried out in Kopernikus project P2X, supported by BMBF
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Research questions and contribution

We aim to determine least-cost hydrogen supply chains...
* ... considering differences in energy efficiency, investment costs, and storage capabilities

* ... and considering electricity system interactions

This calls for a numerical model

* We develop an open-source model and apply it to a future (German) power system with high
shares of renewables

Outcomes of interest
* Hydrogen: optimal technology mix, supply costs, and their drivers

* Electricity system: effects on capacity and dispatch, costs

What is new?
* Previous studies often did not account for power sector interactions of flexible hydrogen supply

* Fully open-source / open data analysis
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The model



Model: DIETER

Visit DIETER

* Open-source GAMS code under MIT license
* www.diw.de/dieter

* https://github.com/diw-berlin/dieter

Cost minimization

* Dispatch and investment

* Hourly resolution over one year

* Thermal and renewable technologies
* Different types of electricity storage

Linear program
* Deterministic, perfect foresight

* No transmission constraints
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A Dispatch and Investment Evaluation Tool with
Endogenous Renewables "DIETER"

The Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER)
has been developed in the research project < StoRES to study the role of power
storage and other flexibility options in a greenfield setting with high shares of
renewables. The model determines cost- mbinations of power generation,
demand-side management, and storage capacities and their respective dispatch
DIETER thus captures multiple system values of power Storage related to arbitrage, firm
capacity, and reserves

DIETER is an open source model which may be freely used and modified by anyone.
The code is licensed under the MIT License. Input data is licensed under the Creative
Commons Aftribution-ShareAlike 4.0 International Public License. To view a copy of
these licenses, visit 2 hitp:/fiopensource.org/licenses/MIT and

icrea 10!
please referto

The model is implemented in the General Algebraic Modeling System (GAMS). Running
the model thus requires a GAMS system, an LP solver, and respective licenses. We use
the commercial solver CPLEX, but other LP solvers work, as well

Below you find an overview of available DIETER versions and respective academic
papers that include descriptions and documentations. The ZIP files include the GAMS
code, an Excel file with all necessary input parameters, and partly also a short
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of model equations and changes compared to earlier versions.

Future Versions of DIETER will also be made available on this homepage

DIETER Version 1.3.0

# DIETER Version 1.3.0 | ZIP, 9.38 MB

Version 1.3.0 introduces residential space heating with a focus on different types of
electric heating (power-to-heat). Version 1.3.0 also introduces a general spatial
resolution
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Model: extension of DIETER

New hydrogen module

* Two electrolysis technologies

e Four channels for distributing H, to fuel stations, including
* Gaseous H,
* Liquified H,
* LOHC  (Oouf Four )

* Different storage options

* Follow-up work: reconversion to electricity

Full co-optimization
* Model decides on optimal capacities and hourly use

* Given conventional electricity demand and H, demand for mobility

https://commons.wikimedia.org/wiki/File:Dibenzyltoluene V1.svg
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Overview of hydrogen supply chains in the model
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Electricity sector

Data and scenarios

Lithium-ion batteries; 2.0 GW
Pumped-hydro storage; 9.5 GW
Brownfield scenario for 2030

Capacities bounded by current grid PV 913 GW

development plan (NEP)
Maximum investment into thermal
plants, minimum investments into
renewables and storage

Time series provided by Open
Power System Data & ENTSO-E
Exogenous minimum renewables
share of 65%, 70%, 75%, 80%

Wind offshore;
17.0 GW

Hydrogen infrastructure

Fully , greenfield”

Lignite; 9.3 GW
Hard coal; 9.8 GW

CCGT,; 17.6 GW

OCGT; 17.6 GW

Oil; 3.2 GW
Other; 4.1 GW

Run-of-river;...

Biomass; 6.89 GW

Wind onshore; 81.5 GW

* H, demand for mobility: 0, 5%, 10%, 25% of passenger road traffic in Germany (0, 9, 18, 45 TWh,,,)

* General assumptions: each fuel station can only offer H, from one channel
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Some intuition:
potential drivers of results



Drivers I: Tradeoff between overall efficiency and flexibility
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—> LOHC dominated by GH, and LH, (worse in both dimensions in direct comparison)

Optimal hy.drogen supply chains NZTITI BERLIN
Stockl, Schill, Zerrahn. September 17, 2019, Melbourne



Drivers II: Fixed investment and transportation capacity costs
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— Only 3% spread between cheapest and most expensive supply chain

—> Transportation costs highest for GH, , low effective load capacity of GH, trailer
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Drivers III: Storage costs (and losses)

20 r

18 |
16 |

14
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storage costs (€/kg)

m filling station m

0 1 1 —1 1 o | 1

DEC GH, LH, LOHC High
(only HP) Pressure

e Substantially lower storage costs for LH, and LOHC
* Expensive high pressure storage at the filling station = only buffer storage

* LH, also suffers from boil-off (about 20%/week)

-> Intuition not so clear = Analysis with numerical optimization model required
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Results: hydrogen supply
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Results: hydrogen supply chains and H, supply costs
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Results: electricity system



Effects on generation capacity (vs. respective baseline)
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- More PV and (a bit) less storage
— Less capacity needed in high-RES scenario (better utilization)
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Effects on yearly electricity generation (vs. respective baseline)
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—> Storage capability of LOHC and LH, allows additional integration of wind power

ORtimaI h\(drogen supply chains NZTITI BERLIN
Stockl, Schill, Zerrahn. September 17, 2019, Melbourne



Effects on renewable curtailment (vs. respective baseline)
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- LOHC makes use of renewable electricity that would otherwise be curtailed
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Effects on system LCOE (without fixed H, costs)

Res65-Dem?25 (DEC+LH2) Res80-Dem?25 (DEC) Res80-Dem25 (DEC+LOHC)
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0% |

-2%

-4%

-6%

-8%

-10%

- Clear renewable integration co-benefit of hydrogen in 80% renewables case
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Sneak preview: what about battery-electric vehicles?

Effects on system LCOE (without fixed H, or BEV-related costs)

Res80-Dem25 (DEC+LOHC) Res 80_Dem25 EV (no V2G) Res 80_Dem25 EV (with V2G)
0%

1%
2%
-3%
4%

-5%
-6%
-7%
-8%

-9%

-10%
— To be explored in more detail in future work

—> If BEV are used instead of fuel cell H, vehicles, also substantial co-benefits
- ...and lower electricity demand, lower deployment of RES, lower overall cost
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Summary and conclusion

Tradeoff between energy efficiency and temporal flexibility
* Energy-efficient decentral electrolysis optimal for lower shares of variable renewables

* Less energy-efficient centralized electrolysis gains relevance with higher shares of variable
renewables because of storage benefits

Optimal choice of H, supply chains also needs to consider other factors
* Space requirements
* Technology acceptance

* Perceived / real danger of operations
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Summary and conclusion

Flexible sector coupling

e ...can generate substantial co-benefits for integrating wind and solar energy
- should be considered in energy models

* ...but also requires additional deployment of variable renewables

Limitations

* Results are driven by renewable surplus generation

* Surpluses may be over-estimated, as we do not consider competing options for flexibility and
sector coupling

- More research on energy system implications of massive sector coupling necessary

Future research
* Additional or competing flexibility options in the electricty sector
* Long-term power storage via H,-to-electricity

* Maybe: how does this compare with Australia?
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Thank you for listening
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Utilization patterns LOHC (RES75 DEM5)
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Utilization patterns LH, (RES75 DEM5)

—> Flexibility of storage loading
constrained by boil-off
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