

Keeping warming to below 1.5°C Possible? And if so, how?

Australian-German Climate & Energy College EU Centre on Shared Complex Challenges University of Melbourne, Australia Joeri Rogelj – 26 April 2016

IIASA, International Institute for Applied Systems Analysis

Outline

- Paris Agreement intro
- Emission implications
- What do 1.5°C scenarios look like?

Paris Agreement

Paris Agreement

Paris Agreement

"Holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels"

Paris Agreement Article 2

"In order to achieve the long-term temperature goal set out in Article 2, Parties aim to reach global peaking of greenhouse gas emissions as soon as possible [...], and to undertake rapid reductions thereafter in accordance with best available science, so as to achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century"

Paris Agreement Article 4

carbon

IPCC AR5 WGI TFE.8 Fig. 1

Emissions implications How much remains for 1.5°C?

- IPCC AR5 SYR
 550 GtCO₂ after 2011
- CMIP5 (near-term adjusted)
 650 GtCO₂ since 2010-2020 average
- Current annual emissions ~37 GtCO₂

Emissions implications How much remains for 1.5°C?

Rogelj et al. 2015, ERL

Emissions implications How much remains for 1.5°C?

Internal consistency Paris Agreement

"Holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels"

Paris Agreement Article 2

"In order to achieve the long-term temperature goal set out in Article 2, Parties aim to reach global peaking of greenhouse gas emissions as soon as possible [...], and to undertake rapid reductions thereafter in accordance with best available science, so as to achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century"

Paris Agreement Article 4

Internal consistency Paris Agreement

Interpretation of Paris Agreement climate targets

Geophysical implications and constraints

Technology and emissions pathways

Example: IIASA IAM framework (MESSAGE-GLOBIOM)

Internal consistency Paris Agreement

IPCC AR5 Scenario Database

5

ITASA

5

ITASA

Internal consistency Paris Agreement

Internal consistency Paris Agreement

Global zero target: a sufficient condition?

What do 1.5°C scenarios look like? (How do they differ from 2°C?)

What do 1.5°C scenarios look like? (How do they differ from 2°C?)

What do 1.5°C scenarios look like? (How do they differ from 2°C?)

What do 1.5°C scenarios look like?

(How do they differ from 2°C?)

What do 1.5°C scenarios look like? Energy system characteristics

E = P * GC * EI * CI

with

E: emissions *P*: population GC: GDP per capita

What do 1.5°C scenarios look like? Energy system characteristics

Rogelj et al (2015) NCC

What do 1.5°C scenarios look like?

Energy system characteristics

5

ILASA

What do 1.5°C scenarios look like? Energy system characteristics

Rogelj et al (2015) NCC

What do 1.5°C scenarios look like? Energy supply characteristics – no differences

Rogelj et al (2015) NCC

What do 1.5°C scenarios look like? Energy supply characteristics – near-term differences

Rogelj et al (2015) NCC

What do 1.5°C scenarios look like? Energy supply characteristics – medium-term differences

What do 1.5°C scenarios look like? Sectorial emissions

What do 1.5°C scenarios look like? Sectorial emissions

What do 1.5°C scenarios look like? Regional contributions

Rogelj et al (2015) NCC

Key mitigation options - BECCS

Diagram courtesy of Nature, downloaded from: http://news.berkeley.edu/

What do 1.5°C scenarios look like? *Negative emissions*

Rogelj et al (2015) NCC

What do 1.5°C scenarios look like?

Negative emissions

What do 1.5°C scenarios look like? Negative emissions – a requirement?

5

ILASA

BECCS deployment is:

- Most probably necessary for 1.5°C
- But scale could be much less than what costoptimizing models suggest
- Artefact of intertemporal optimisation
- Also an issue for 2°C, and bioenergy even for 3°C

BECCS requirement dependent on choices regarding timing of action, and post-peak decline rates.

What do 1.5°C scenarios look like? Like-with-like comparison

What do 1.5°C scenarios look like? Like-with-like comparison

What do 1.5°C scenarios look like? Like-with-like comparison

What do 1.5°C scenarios look like? Key differences with 2°C scenarios

additional GHG reductions, mainly from CO2

CO2 reductions beyond net zero

rapid near-term decarbonisation of energy supply

greater demand side mitigation efforts

energy efficiency improvements are crucial

higher mitigation costs

comprehensive reductions in the coming decade

Rogelj et al (2015) NCC

Conclusions

Thank you

contact: rogelj@iiasa.ac.at

Understanding carbon budget influences

