Emergence of the climate change signal and the sensitivity of historical climate simulations to uncertain aerosol forcing

Andrea Dittus, **Ed Hawkins**, Laura Wilcox and Rowan Sutton Chris Smith and Martin Andrews

Hawkins et al., in prep

ANNUAL SIGNAL

Signal of observed temperature change since the earlyindustrial period (1850-1900)

Data: Berkeley Earth

Noise of observed temperature change since the earlyindustrial period (1850-1900)

Data: Berkeley Earth

Signal-to-noise ratio of observed temperature change since the earlyindustrial period (1850-1900)

Data: Berkeley Earth

Signal-to-noise ratio of observed temperature change since the early-industrial period (1850-1900)

Global aerosol

Red: Dust Blue: Sea salt Green: Smoke White: Sulphate

NASA GEOS

Aerosol effects on climate

IPCC (2007)

Global temperature variability

Wilcox et al., 2013 (ERL)

Aerosol radiative forcing uncertainty is large

IPCC (2013)

An 'intermediate' size historical ensemble with HadGEM3-GC3.I

- 20 historical simulations 1850-2014
- HadGEM3-GC3.1 (CMIP6 version), N96 (135 km in mid-latitudes), 1 degree resolution in ocean
- Forcing: historical CMIP6 forcing with modified anthropogenic aerosol emissions
- Anthropogenic aerosol emissions are scaled: 0.2x, 0.4x, 0.7x, 1.0x and 1.5x
- 4 runs per scaling starting from different ocean initial conditions

Experimental design: sulphate emissions

Total global SO₂ emissions

Present-day aerosol forcing:

- 0.2x scaling: -0.35 W/m²
- 0.4x scaling: -0.63 W/m²
- 0.7x scaling: -1.0 W/m²
- 1.0x scaling: -1.3 W/m²
- 1.5x scaling: -1.6 W/m²

Experimental design: sulphate optical depth

Global mean surface temperature evolution

Global mean surface temperature evolution

Sensitivity to choice of baseline period for 1.0x scaling simulations

31-year running trends

31-year running trends

Spatial pattern of temperature trends 1951-1980

27/pe to enter a caption.

Spatial pattern of temperature trends 1981-2010

28 pe to enter a caption

$$S/N_{scaling} = \frac{\overline{Trend_{IC_{1,..,4}}}}{\sigma(trend)_{control\,run}}$$

Comparison with observations 1951-1980

Comparison to observations 1981 - 2010

Signal-to-noise ratio 1951-1980

Signal-to-noise ratio 1981-2010

Spatial pattern of precipitation trends

1951-1981 0.2 scaling 1951-1981 1.5 scaling 90°N 90°N 45°N 45°N 0° 45°S 45°S 90°S 90° 90°E 90°E 180° 90°W 0° 180° 180° 90°W 0° 180°

Spatial pattern of precipitation trends

1951-1981 1.5 scaling 1951-1981 0.2 scaling 90°N 90°N 45°N 45°N 0° 45°S 45°S 90°S 90° 90°E 180° 90°W 0° 180° 180° 90°W 0° 90°E 180° 1981-2010 0.2 scaling 1981-2010 1.5 scaling 90°N 90°N 45°N 45°N 0° 45°S 45°S 90°S · 90°S 90°W 90°E 90°W 90°E 180° 180° 180° 0° 180° 0° -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 [%/decade]

September Arctic sea-ice extent

- The signal of climate change is clearly emerging at the local spatial scale and for shorter timescales, especially in regions with larger vulnerability.
- A novel large ensemble of simulations samples the uncertainty in historical aerosol emissions to examine the causes of past changes in climate. Data can be made available.
- Temperature trends from 1951-1980 highly sensitive to magnitude of aerosol forcing. 1981-2010 trends are more similar and primarily GHG driven, regardless of scaling.
- The observed patterns are best matched by 1.5 scaling ensemble for both time periods discussed, but pattern agreement low overall in 1951-1980s
- Analysis of signal-to-noise in trends highlights elements from both GHG and AA forcing over 1951-1980 period

Atlantic Meridional Overturning Circulation (AMOC)

Atlantic Multi-decadal Variability index (AMV)

