Zero Carbon Australia Land Use Report

MELBOURNE SUSTAINABLE Society institute b e y o n d **ZERO** emissions

Land Use Report

A project to achieve net zero emissions from agriculture and forestry in Australia.

National Inventory Report

National Inventory Report

https://www.youtube.com/watch?v=aTR7Av81X5w#t=223

Deforestation

Year

National Inventory Report

National Inventory Report

Enteric Fermentation

Image credit: Robert Kerton / CSIRO

Pasture Fire

46 million ha of northern Australia burnt each year

Greenhouse emissions from agriculture

(Excludes clearing and savanna fire)

	Emissions [t C02 e/ha/yr]								
Quartile	Inter	isive	Extensive						
	GWP ₁₀₀	GWP ₂₀	GWP ₁₀₀	GWP ₂₀					
Q1	0.301	1.154	0.014	0.046					
Median	0.567	1.832	0.022	0.072					
Q3	0.953	2.745	0.063	0.201					

Sequestration potential – RangeASSESS n=146

Quartile	Sequestration potential after restoration [t CO2/ha/yr]				
	Intensive	Extensive			
Q1		0.137			
Median		0.253			
Q3		0.619			

Sequestration potential – FullCAM n=154

Quartile	Sequestration potential after restoration [t CO2/ha/yr]					
	Intensive	Extensive				
Q1	1.815	0.137				
Median	2.876	0.253				
Q3	4.344	0.619				

Net carbon benefit of transition Avoided emissions + sequestration

	Net Carbor	n Benefit	CO ₂ e/ha/yr]				
Quartile	Inter	sive	Extensive				
	GWP ₁₀₀	GWP ₂₀	GWP ₁₀₀	GWP ₂₀			
Q1	2.345	3.189	0.159	0.187			
Median	3.571	4.936	0.273	0.411			
Q 3	5.875	7.421	0.714	0.795			

Proportion restored (GWP₁₀₀)

Proportion restored (GWP₂₀)

Local value of agricultural production

Local Value of Agricultural Production [\$/ha/yr]							
Quartile Intensive Extensive							
Q1	125.00	1.75					
Median	193.25	3.35					
Q3	336.69	7.55					

Area restored / opportunity cost (GWP₁₀₀)

 Table 5.10
 Outcomes of restoration in Scenario 1, based on emissions profiling at GWP₁₀₀.

	Zone	Restored [%]	Restored [MHa]	seq (M	Total sequestration [Mt CO2/yr] 36.3 9.3 45.6		Avoided No emissions en [Mt CO2-e/yr] [Mt		New total emissions Mt CO2-e/yr]		Net carbon benefit [Mt CO2-e/yr]	Total cost [\$M/yr]
	Intensive	19	16.2				11.2		36.3		47.6	5,058
_	Extensive	12	39.3				2.0 5 13.2		9.3		11.4	335
	Total	13	55.5						45.6		59.0	5,393

Revegetating salt/steep land

- Slopes >10%
- Local groundwater flow systems at risk of salt
- 7.9Mha ~ half of intensive zone suggested reveg.

5. Other options

2.3Mha to mallee SRWC (Farine et al. 2011) ~14 Mt CO_2 -e/yr as biochar

Farm	IBRA Sub- region		Emissions [t CO ₂ -e/yr]	Area	Emissions CO ₂ -e/ha/yr]	equestration Potential CO ₂ -e/ha/yr]	Revegetated	
		Animals	Cropping/ trees	Total	[ha]		ν, –	[%]
GWP ₁₀₀								
Belmont	RIV03	389	-271	118	1760	0.067	7.63	0.9
Dorrigo	NNC04	75	-300	-225	94	-2.394	23.50	-
Murray Eden	RIV03	3612	-39	3573	566	6.313	8.45	42.8
Prestbury	BBS17	642	134	776	1033	0.751	12.98	5.5
Winiam	MDD05	1202	613	1815	2782	0.652	5.85	10.0
Winona	NSS01	591	-109	482	840	0.574	9.48	5.7

"Our commitment to further tree planting has lessened somewhat as a result of some hard economic times associated with drought. The old saying 'you can't be green if you are in the red' comes to mind as the practice of tree planting, fencing etc. is quite costly."

David McConnell, rice grower and sheep grazier, Barham NSW

"Farmers in the Wimmera are at the coal face. We've lost two inches of growing season rain since the mid-90's. That's 20% of our income".

On allocating 12% of his holding to carbon sequestration:

"It can be done — we can deal with that as long as the costs are shared"

Andrew Colbert, cereal and sheep farmer, Victorian Wimmera

"Tree planting in the south may succeed without watering, but [watering] would be essential here for at least the first year, as neighbours and the local LandCare group have found. There would be a large labor cost to this".

Rob McCreath, mixed crop and beef producer, Darling Downs, Queensland

Key Findings

- Vegetation clearing for pasture causes more emissions than the rest of the agriculture sector
- A number of management changes can reduce emissions, but these have limited reach
- Revegetation can offset unavoidable agriculture emissions and provide revenue for farmers
- Forests in SE Australia can sequester 7,500 million tonnes of carbon dioxide if left to recover

MELBOURNE SUSTAINABLE Society institute b e y o n d **ZERO** emissions

Thank you